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Abstract

Differences in gene expression are thought to be an important source of phenotypic
diversity, so dissecting the genetic components of natural variation in gene expression is
important for understanding the evolutionary mechanisms that lead to adaptation. Gene
expression is a complex trait that, in diploid organisms, results from transcription of both
maternal and paternal alleles. Directly measuring allelic expression rather than total gene
expression offers greater insight into regulatory variation. The recent emergence of high-
throughput sequencing offers an unprecedented opportunity to study allelic transcrip-
tion at a genomic scale for virtually any species. By sequencing transcript pools derived
from heterozygous individuals, estimates of allelic expression can be directly obtained.
The statistical power of this approach is influenced by the number of transcripts
sequenced and the ability to unambiguously assign individual sequence fragments to
specific alleles on the basis of transcribed nucleotide polymorphisms. Here, using
mathematical modelling and computer simulations, we determine the minimum
sequencing depth required to accurately measure relative allelic expression and detect
allelic imbalance via high-throughput sequencing under a variety of conditions. We
conclude that, within a species, a minimum of 500–1000 sequencing reads per gene are
needed to test for allelic imbalance, and consequently, at least five to 10 millions reads
are required for studying a genome expressing 10 000 genes. Finally, using 454
sequencing, we illustrate an application of allelic expression by testing for cis-regulatory
divergence between closely related Drosophila species.
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A major challenge in evolutionary biology today is
understanding the genetic and molecular mechanisms
that give rise to phenotypic differences within and
between species. Such differences can arise from muta-
tions affecting the function of gene products (i.e. pro-
teins or RNAs) or mutations that affect expression of
these genes. Historically, researchers have looked almost
exclusively for (and often found) changes in protein cod-

ing regions that appeared to contribute to phenotypic
evolution; however, during the last decade, there has
been a dramatic increase in the number of studies show-
ing that changes affecting gene regulation can also bring
about diversity in ecologically relevant traits that affect
behaviour, physiology and morphology (e.g. Duda &
Remigio 2008; Giger et al. 2008; Voelckel et al. 2008; see
also for reviews Wray 2007; Hoekstra & Coyne 2007;
Stern & Orgogozo 2008; Pennisi 2008; Wolf et al. 2010).
Studies of gene expression have become routine with

the development of techniques that quantify transcript
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abundance in a high-throughput way. Microarray stud-
ies, in particular, have produced valuable catalogues of
differences in transcript levels between individuals
(Oleksiak et al. 2002; Whitehead & Crawford 2006),
between species in diverse taxa (Rifkin et al. 2003) and
between ecological conditions (Reymond et al. 2000;
Carsten et al. 2005; Derome et al. 2006). Such studies
also show that inter-individual differences in gene
expression are often highly heritable (Wayne et al. 2004;
Gibson & Weir 2005; Hughes et al. 2006; Lemos et al.
2008; Ayroles et al. 2009).
Because of this heritability, quantitative trait locus

(QTL) mapping can be combined with microarray anal-
ysis to investigate the genetic basis of variable gene
expression (Vasemagi & Primmer 2005). When a QTL
affecting a gene’s transcription maps close to the
affected gene it can be classified as cis-acting, while a
QTL that maps further away on the same chromosome,
or to another chromosome, can be classified as trans-act-
ing (Brem et al. 2002). However, strictly speaking, ‘cis’
describes mutations that affect expression of only the
allele on the same chromosome as the mutation,
whereas ‘trans’ describes mutations that affect allelic
expression on both homologous chromosomes. Exam-
ples of cis-acting sequences include promoters and enh-
ancers, which are typically located close to the gene
that they regulate, while examples of trans-acting regu-
lators include genes that encode transcription factors,
which may be located anywhere in the genome. Classi-
fications of expression QTLs as cis- or trans-acting based
solely on their proximity to the affected gene are there-
fore only an approximation – and one that comes with
many caveats (Rockman & Kruglyak 2006).
Nevertheless, studies mapping expression QTLs

suggest that both cis- and trans-regulatory mutations
contribute to transcriptional variation, with a prepon-
derance of expression QTLs appearing to be cis-acting
(Wayne et al. 2004; Hughes et al. 2006; Osada et al.
2006; Bergen et al. 2007; Genissel et al. 2008; Gilad et al.
2008; Price et al. 2008; Lemos et al. 2008; but see Morley
et al. 2004), although this methodology generally has
less statistical power to detect trans-acting than cis-act-
ing variants (Cookson et al. 2009). In addition, QTL
mapping studies of variable gene expression require
microarrays suitable for studying the species of interest,
molecular markers that cover its complete genome, and
resources for genotyping these markers in a segregating
population. The lack of any one of these things can be a
significant impediment for mapping expression QTLs
outside well-established genetic model systems.
An alternative strategy for studying regulatory varia-

tion uses allelic transcript abundance and the fact that
cis-regulatory mutations have allele-specific effects on
gene expression while trans-regulatory mutations affect

expression of both alleles in a diploid cell (Cowles et al.
2002; Wittkopp et al. 2004). One or more transcribed
differences in nucleotide sequence are used to discrimi-
nate between transcripts produced by each allele.
Asymmetric expression of two alleles, also known as
allelic imbalance (AI) that is observed between alleles
present in the same cell (i.e. exposed to the same trans-
regulatory environment) provides direct evidence of cis-
regulatory differences. Expression differences observed
between individuals homozygous for two different
alleles that are not also observed between these same
alleles in heterozygotes are attributed to trans-regula-
tory differences (Wittkopp et al. 2004).
This allele-specific approach has now been used to

decompose variable gene expression into its cis- and
trans-regulatory component parts for flies (e.g. Wittkopp
et al. 2008a,b), humans (e.g. Pant et al. 2006; Serre et al.
2008), plants (e.g. de Meaux et al. 2005; Guo et al. 2008)
and yeast (Tirosh et al. 2009). With the exception of Tir-
osh et al. (2009), who developed custom microarrays, the
methods used to measure allelic expression in these stud-
ies are not readily scalable to an entire genome. Further-
more, methods used in these studies, including Tirosh
et al. (2009), require polymorphic sites that differentiate
alleles to be known a priori. For these reasons, studying
allelic expression genome wide has been impractical for
nonmodel (as well as most model) species.
Next generation sequencing technologies have the

potential to revolutionize studies of allelic expression.
Because they obviate the need for a priori sequence
information, molecular markers, and locus-specific
genotyping assays, next generation sequencing methods
can measure allelic abundance at a genomic level in vir-
tually any species. Only transcribed nucleotide differ-
ences between alleles and sufficient sequencing depth
for detecting AI are required. For these reasons, we
expect measurements of allelic expression based on next
generation sequencing will soon be acquired by many
researchers, not only to disentangle cis- and trans-regu-
latory variation, but also to quantify the heritability of
gene expression, examine dominance among regulatory
alleles, evaluate their contribution to morphological,
physiological, or behavioural changes, and reveal pat-
terns of allelic variation within and between species.
Not surprisingly, the benefits of next generation

sequencing come with a price – and often a high one. A
single ‘run’ of high-throughput sequencing can provide
up to hundreds of millions of sequences, but currently
costs thousands of dollars. The precise cost per base dif-
fers among technologies, as does the length of each
sequenced fragment and the total number of sequences
collected. Because of this cost, careful experimental
design that maximizes the data per dollar for allelic
expression studies using next generation sequencing is
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critical. Optimal experimental design is particularly par-
amount for studies in molecular ecology that seek to
examine allelic expression in multiple individuals, spe-
cies or environmental conditions.
In this study, we use mathematical modelling and

computer simulations to identify critical parameters
affecting measurements of allelic expression and the
detection of AI with high-throughput sequencing. We
show that the statistical power of this method depends
upon four crucial parameters (Fig. 1): sequence diver-
gence between alleles, the relative transcript abundance,
the average read length (i.e. amount of transcript
sequenced) and sequencing depth (i.e. average number
of reads per gene). The latter two parameters determine
the number of sequencing reads expected to map to
each gene. The former two parameters determine the
proportion of sequence reads per gene that are informa-
tive for allelic expression [i.e. contain one or more sin-
gle nucleotide polymorphisms (SNPs) that allow reads
to be unambiguously assigned to an allele]. We show
that this probability is strongly affected by the location
of SNPs within an mRNA as well as by the way in
which the cDNA library is prepared for sequencing.
Here, we derive a mathematical model that determines
the minimum number of reads required to test for sig-

nificant AI given various levels of sequence divergence,
read lengths, and distributions of relative transcript
abundance, and we compare these results with simula-
tions. Finally, to illustrate the potential of this approach,
we describe an empirical study using measurements of
allelic expression in F1 hybrids between Drosophila mela-
nogaster and Drosophila simulans obtained using 454
sequencing (Roche 454 Life Sciences).

Materials and methods

Fly strains, rearing and crosses

F1 hybrids were produced by crossing 4-day-old virgin
Drosophila melanogaster Canton S females with Drosophila
simulans C167.4 males. Each mating vial contained 10
females and 10 males. Flies were reared on standard
cornmeal medium at 20 "C under a 10 ⁄ 14-h light ⁄dark
cycle. Hybrid females were collected at emergence and
were stored for 5–6 days at room temperature and then
snap frozen in liquid nitrogen.

Preparation of cDNA libraries and 454 sequencing

Total RNA was extracted by homogenizing !500 hybrid
females in 4 mL of TRIZOL Reagent (Invitrogen). We
isolated mRNA using an Oligotex Direct mRNA Mini
Kit (Qiagen). One milligram of mRNA was used for the
first-strand cDNA synthesis (Superscript II; Invitrogen).
Reverse transcriptase reactions were performed with
biotinylated polyT primer. Second-strand synthesis reac-
tions contained 20 units of DNA ligase, 5 units of RNase
H and 30 units of DNA polymerase I (New England Bi-
olabs). The second-strand reactions were randomly
sheared by sonication. The cDNA fragment was blunt-
ended with T4 polymerase (New England Biolabs).
Finally, 3¢-end cDNA fragments containing the biotiny-
lated polyT primers were removed from cDNA frag-
ment pool by using Dynabeads (Invitrogen). Sequencing
was performed on a GS FLX Instrument following stan-
dard protocols (454 Life Science Roche Diagnostics).
Sequencing beads containing less than 30 bases with
high quality score (>20) were discarded. All sequences
are accessible in GenBank (genome project ID 41715).

Data handling and analysis of 454 sequences

A custom Perl script was used (i) to BLAST 454 reads
against genic and intergenic sequences fromD. melanogas-
ter (Flybase release 4.1, http://flybase.org/) and against
the complete genome of D. simulans (Apr. 2005 assem-
bly, UCSC Genome Bioinformatics, http://genome.
ucsc.edu/), (ii) to assign to each 454 read to the most
probable species (i.e. D. melanogaster or D. simulans) as
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Fig. 1 High-throughput sequencing technology allows mea-
surement of relative allelic expression genome wide. The sche-
matic representation shown illustrates the steps require to
collect allelic expression data. Key parameters associated with
each step that ultimately affect the statistical power for detect-
ing significant allelic imbalance (AI) are also shown.
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well as to a specific gene or intergenic region and (iii)
to extract descriptive information from each read: num-
ber of basepairs (i.e. sequence length), extent of homol-
ogy identified by BLAST, genomic position in the D.
melanogaster and D. simulans genomes, number of gaps
in the sequence alignments, number of shared SNPs,
and number of species-specific SNPs. The first five of
these six parameters describe the quality of 454 reads,
while the final parameter was used to classify each
sequence read as derived from D. melanogaster or D.
simulans or to classify it as having an undetermined ori-
gin, which was most common for sequence reads that
matched either nonpolymorphic or extremely polymor-
phic regions. All statistical analyses and simulations
described in this work were performed using R (R
Development Core Team, 2005).

Pyrosequencing data collection and analysis

To validate measures of allelic expression based on 454
sequencing, pyrosequencing assays were performed for
14 genes (Table S2, Supporting information) using pro-
tocols described in Wittkopp et al. (2008a,b). For each
gene analysed, a custom pyrosequencing assay consist-
ing of three unique primers was developed and tested
for specificity (primer sequences available upon
request). Using these assays, we quantified AI in each
of eight replicate cDNA samples, each independently
synthesized from new mRNA extracted from flies col-
lected at the same time as those used for 454 sequenc-
ing. Genomic DNA was also extracted from flies
obtained in the initial collection and analysed in qua-
druplicate using pyrosequencing. From each pyrose-
quencing reaction, the ratio of D. melanogaster to D.
simulans alleles was calculated as described in Wittkopp
et al. (2008a,b). For each gene, the ratio of relative allelic
expression (i.e. D. melanogaster ⁄D. simulans) was log
(base 2) transformed, and the average value from repli-
cate genomic DNA samples was subtracted from the
average value of replicate cDNA samples, effectively
correcting for any bias in PCR-amplification between
alleles (Wittkopp et al. 2004).

Quantifying allelic expression using short-read
sequencing: expectations and statistical power

Despite significant improvements in read length since
their release, current high-throughput sequencing tech-
nologies (e.g. Illumina Solexa, Roche 454 Life Sciences,
ABI Solid) remain ‘short-read’ (i.e. <500 bp) sequencing
methods. The length of sequences is particularly impor-
tant for studying allelic expression because, to be infor-
mative, a sequencing read must include one or more
SNPs that discriminate between alleles. If the distance

between heterozygous sites within a transcript is
greater than the average sequence length, many reads
will include only invariant sites and thus be uninforma-
tive for allelic expression. A single ‘run’ of next genera-
tion sequencing generates hundreds of thousands to
millions of sequencing reads, but only the subset of
reads that are informative contribute to estimates of
allelic expression. The relative frequency of informative
and uninformative reads has a major impact on the sta-
tistical power for detecting AI in a given experiment.
In the following section, we derive the probability of

obtaining informative and uninformative sequences
depending on the number of total sequencing reads, the
read length and the sequence divergence between
alleles. The model assumes that informative reads could
be assigned unambiguously to alleles: it implies that
allelic reference sequences are known and read map-
ping procedures are without errors. For very short
reads, alignments against reference genome can be sen-
sitive to mismatches but a large number of new algo-
rithms have been recently released to deal with this
issue (see Bateman & Quackenbush 2009; Kofler et al.
2009). Nevertheless, in our model, confidence of allele
assignment can be controlled for by the number of
SNPs required (see below). We then relax the model
assumptions and discuss possibilities of measuring alle-
lic expression without reference genomes or a priori
sequences. We show that the total number of sequence
reads, in combination with the distribution of transcript
abundance among genes, determines the sequencing
depth (i.e. number of reads) needed per gene. The read
length and sequence divergence define the likelihood of
sampling one or more transcribed SNPs, which in turn
determines the proportion of informative reads. We
explore a wide range of parameter values that should
encompass most biological comparisons within and
between closely related species. These conditions also
reflect the current and anticipated output of multiple
high-throughput sequencing technologies. The ultimate
goal of this work was to provide guidance for research-
ers designing allelic expression experiments in their
favourite system.

The relationship between sequence divergence and read
length

When quantifying total levels of transcript abundance
by sequencing cDNA, reads from anywhere within the
transcript are informative as long as they are long
enough to map unambiguously to a single site in the
genome (Torres et al. 2008; Wang et al. 2009). By con-
trast, when measuring allelic expression, only the subset
of these reads containing one or more SNPs that distin-
guish transcripts derived from different alleles of the
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same gene are informative. Therefore, read length is a
critical parameter for sequencing-based studies of allelic
expression: longer reads increase the probability of
sequencing a polymorphic site. Sequence divergence
between the two alleles under study must also be con-
sidered: greater divergence increases the probability of
sequencing polymorphic sites for a given read length.
More formally, the probability of sampling at least x

SNPs in a read of length l can be approximated by:

PrðX # xÞ ¼
Xl

k¼x

l
k

! "
dk 1& dð Þl&k; ð1Þ

where d is the sequence divergence (i.e. the probability
of observing a SNP at each nucleotide position). The
probability of obtaining exactly n informative reads
with at least x SNPs in s randomly sampled reads from
a heterozygous gene is given by the probability mass
function:

PrðY ¼ nÞ ¼ s
n

! "
PrðX # xÞn 1& PrðX # x'Þð Þs&n: ð2Þ

The mean and the variance of this distribution are

EðYÞ ¼ sPrðX # xÞ ð3Þ

and,

VarðYÞ ¼ sPrðX # xÞð1& PrðX # xÞÞ: ð4Þ

Consequently, Pr (X ‡ x) is the expected proportion
of informative reads in a random sample.
If only one SNP is required to assign alleles unambig-

uously, eqn (1) becomes:

PrðX # 1Þ ¼ 1& ð1& dÞl: ð5Þ

For this special case, the minimum read length
required to observe a minimum proportion of Pr(X ‡ 1)
reads with at least one SNP is

l ¼ logð1& PrðX # 1ÞÞ
logð1& dÞ

: ð6Þ

Hence, for mRNA sequences that differ at 0.5% of
sites, sequence reads longer than 138 bp are needed in
order to obtain ‡50% of reads with at least one SNP.
However, in some cases, more than one SNP may be
required to unequivocally discriminate between the two
alleles. For example, depending on the specific experi-
ment, recombination, homoplasy, or errors in transcrip-
tion or sequencing could lower the confidence of
assignments only based on a single SNP. Therefore, we
also calculated the expected proportion of informative

reads when more than one SNP is required for allele
assignment. By applying eqn (2), we show that this
parameter diminishes rapidly when the minimum num-
ber of required SNPs increases (Fig. 2A, B). Sequences
with little genetic divergence (i.e. <1%) are particularly
sensitive to the minimum number of SNPs required to
discriminate between alleles.
To determine how well this mathematical model pre-

dicts the proportion of informative reads, we randomly
sampled reads in silico with lengths ranging from 35 to
800 bp from pairs of virtual mRNA sequences 2000 bp
long that contained various levels of sequence diver-
gence. SNPs were distributed uniformly across the
length of each hypothetical mRNA sequence. In each
simulation, we counted the number of informative
reads, that is, the number containing one or more poly-
morphic sites. As shown in Fig. 2C, D, predictions from
our model are most accurate for sequence reads that
are £300 bp. For longer reads, our model underesti-
mates the mean as well as the variance. Large means
are inaccurately estimated because eqn (1) assumes that
mRNA molecules have infinite length and conse-
quently, that SNPs can be sampled with replacement.
When read lengths converge to mRNA lengths, this
assumption then becomes invalid and eqn (1) should
be replaced by a hypergeometric form that includes a
parameter for mRNA length (see legend for Fig. S1,
Supporting information). Although this hypergeometric
model is indeed more accurate (compare Fig. 2 and
Fig. S1, Supporting information), it is also more com-
plex mathematically. For most experimental design
applications, we anticipate that the simpler binomial
model will be sufficient.
Note that both the binomial (Fig. 2) and hypergeo-

metric (Fig. S1, Supporting information) models under-
estimate the variance observed in the simulation study.
This is because these models do not take into account
the location of polymorphic sites within each mRNA.
The probability of sampling a SNP dependent upon its
position in the mRNA (Fig. S2, Supporting information)
can be described as:

PrðB ¼ iÞ ¼ wi

ðlg & lþ 1Þl
;

1 ) i<lr : wi ¼ i
lg & lr þ 1<i ) lg : wi ¼ lg & i
lr ) i ) lg & lr þ 1 : wi ¼ lr

8
<

:

ð7Þ

where i is the nucleotide position in the mRNA
sequence, lg the mRNA length, and

l ) lg
2 : lr ¼ l

l>
lg
2 : lr ¼ lg & lþ 1

(

The mean of this probability distribution is
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EðBÞ ¼ 1
lg
; ð8Þ

and its variance is

varðBÞ ¼ lg
2lr & 1

3lrðlr & 1Þ & 1

! "
lr

ðlg & lþ 1Þl&
1

lg

! "2

: ð9Þ

Hence, considering the location of a SNP requires a
much more complex model and only special cases can be
easily derived. For instance, for the simple situation of
an mRNA sequence containing one and only one SNP,
the probability of sampling informative reads becomes

PrðX ¼ 1Þ ¼ l

lg
: ð10Þ

The model described above treats the read length l as a
fixed value even though (after filtering for base quality)
all sequencing technologies produce reads with a range
of alignable lengths. To incorporate this element of the
data, we represent the distribution of l as Pr(l),
and incorporate this new assumption into eqn (1),
resulting in

PrðX # xÞ ¼
Xþ1

l¼1

PrðlÞ
Xl

k¼x

l
k

! "
dk 1& dð Þl&k: ð11Þ

Incorporating variable read lengths into the model
had little effect on the probability of sampling x SNPs
in a read. For instance, assuming a Poisson distribution
of read lengths, eqn (5) becomes

PrðX # 1Þ ¼ 1& e&dt ð12Þ

Finally, the proportion of genes with more than n
informative reads can be estimated by:

PrðI # nÞ ¼
Xþ1

t¼n

PrðT ¼ tÞ

1&
Xn&1

j¼1

t

j

! "
PrðX # xÞj 1& PrðX # xÞð Þt&j

0

@

1

A;

ð13Þ

where Pr(T = t) is the distribution of transcript levels t
across the genome. This distribution can be empirically
determined or approximated by either discrete decay or
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power law functions (e.g. Ogasawara et al. 2003).
Assuming a geometric decay and using eqn (5), we can
rewrite eqn (13) as:

PrðI # nÞ ¼
Xþ1

t¼n

1
!T

1& 1
!T

! "t

1&
Xn&1

j¼1

t

j

! "
1& ð1& !dÞl

# $j
ð1& !dÞl

# $t&j

0

@

1

A;

ð14Þ

where !T is the mean number of transcripts per gene
(i.e. the sequencing depth) and !d is the mean sequence
divergence. Although eqn (14) lacks some of the vari-
ance in parameter values discussed above (i.e. read
length and sequence divergence distributions as well as
SNP location within a sequence), the model neverthe-
less does an excellent job of predicting the simulated
proportion of genes with more than n informative reads
(Fig. 3).
Therefore, for a given number of transcribed genes

and total number of sequencing reads (from which !T is
derived), as well as a particular mean sequence diver-
gence and mean read length, the number of genes
expected to have more than n informative reads can be
robustly predicted. This number (n) is critical for
designing allelic expression experiments using next gen-
eration sequencing because it directly determines the
statistical power for detecting AI.

Allelic imbalance and statistical power

If we specifically define AI as the ratio of allelic tran-
script abundance (i.e. number of transcripts from allele
1 divided by the number of transcripts from allele 2),
then the probability of observing na1 reads from allele 1
in a sample of n informative reads is given by:

PrðN ¼ na1Þ ¼
n
na1

! "
1

AIþ 1

! "na1

1& 1

AIþ 1

! "n&na1

: ð15Þ

Using this equation, we can determine whether an
observed AI value for a gene is significantly different
from a null hypothesis of no difference in allelic expres-
sion (AI = 1). As shown in Fig. 4, statistical power rises
quickly when the true value of AI is ‡2 (e.g. a sample
of only 50 informative reads provides 60% statistical
power). On the other hand, small imbalances (<1.25-
fold) require more than 500 informative reads to reach
this same power. Although statistical power to detect
significant AI can be achieved easily with small sam-
ples, large samples are generally required to produce
reasonably precise estimates of AI, especially when the
true value of AI is very large (Fig. S3, Supporting infor-
mation). Prior studies comparing allelic expression
within and between Drosophila species observed a med-
ian AI of 1.4 for all genes and samples examined and a
median AI of 1.7 for cases classified as having signifi-
cant AI (Wittkopp et al. 2008a,b). This suggests that 200
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with more than 200 informative reads
for a given sequencing depth are consis-
tent with simulated data. Predicted
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(Spearman’s Rho >99%).
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or more informative reads will generally be required to
detect a significant and precise AI values using high-
throughput sequencing.

Read sampling strategies

The number of transcribed genes and the mean
sequence divergence are both dictated by the species
and genotypes under study and cannot be altered. Fur-
thermore, the researcher can affect the average length of
sequence reads only in a limited way by choosing one
next generation sequencing technology instead of
another. The aspect of a sequencing-based allelic expres-
sion experiment that the researcher has the most control
over is the preparation of cDNA (or equivalent) libraries
used for sequencing. Two general types of cDNA
libraries can be used for measuring allelic expression.
The first is essentially a shotgun library, in which frag-
ments are randomly sampled from the transcriptome.
The second is more targeted, containing fragments only
from a predetermined region of each transcript. For
instance, the 5¢- or 3¢-end can be systematically sampled
from each transcript (e.g. Gowda et al. 2006). The sam-
pling strategy should be chosen carefully because, as
shown in eqn (7) and Fig. S2 (Supporting information),
the location of SNPs within the cDNA template used for
sequencing affects the probability of collecting sequence
reads informative for allelic expression.
For a given sequence divergence and read length, the

sampling strategy does not affect the expected mean

proportion of informative reads; however, it has a large
effect on the variance among genes in the proportion of
informative reads (Fig. 5C). With a targeted sampling
approach all reads for a given gene will either be infor-
mative or uninformative, depending on the position of
SNPs in the transcript. Consequently, targeted sampling
maximizes the statistical power to detect AI for genes
that have at least one polymorphic site in the targeted
region, but provides no information about relative alle-
lic expression for genes that lack variation in this
region. With random sampling, the situation is
reversed: estimates of allelic expression can be obtained
for more genes, but the power to detect significant AI
for any given gene is reduced. Additionally, under ran-
dom sampling, gene length affects the relative esti-
mated expression among genes (i.e. more reads should
come from longer genes), but has a negligible effect on
measures of relative allelic expression because tran-
scripts from both alleles of a gene are usually the same
length. (For this reason, we did not include gene length
in the mathematical models described above.)
To compare the power of random and targeted sam-

pling, we simulated the proportion of genes with more
than 200 informative reads under different conditions.
As described above, 200 informative reads per gene
provides reasonable statistical power to detect reason-
ably small difference in allelic expression (see Fig. 4).
Results from this simulation show that random sam-
pling generally performs better than targeted sampling,
except when sequence divergence and the number of
sequences per gene are low, and especially when
sequencing reads are short (Fig. 5A, B). As an alterna-
tive, a ‘mixed’ sampling scheme that included 50% tar-
geted and 50% randomly located sequence reads
produced results most similar to targeted sampling
(Fig. 5C). Such a ‘mixed’ sampling strategy could be
employed by paired-end sequencing a cDNA library
containing fragments of variable length that all share
the same 5¢- or 3¢-end.
Based on these results, we conclude that, for allelic

expression experiments with at least moderate sequence
depth in species with reference genomes available (that
can be used to map sequencing reads to particular
genes), a random sampling strategy will almost always
provide the most information per unit cost. However, if
no reference genome sequence is available, or if
sequencing depth is limited, targeted sampling may
have advantages that offset the loss of information on a
genomic scale. For example, targeted sampling simpli-
fies the process of determining which sequence reads
come from the same gene. In the absence of a reference
genome, this is especially important because sequence
reads must be assembled into (hopefully, gene-specific)
contigs de novo and all reads from the same gene generated
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by targeted sampling should overlap. Alternatively if a
reference genome is available, but only low depth
sequencing is possible, a targeted strategy would pro-
vide more accurate estimates of allelic expression for
the subset of the genes with SNPs in the targeted
regions than random sampling. Finally, although there
may be some cases for which ‘mixed’ sampling would
be the best choice, in the two scenarios considered
above, reducing coverage in the targeted region and
distributing some of the reads more evenly across the
transcriptome does not offer any clear advantages.

Allelic expression in Drosophila hybrids

To illustrate one application of allelic expression mea-
surements, we quantified allelic expression in cDNA
pools derived from interspecific F1 hybrids and used
these data to test for significant AI (i.e. differences in
expression between the maternal and paternal alleles).
F1 hybrids used for this study were produced by cross-
ing Drosophila melanogaster females and Drosophila simu-
lans males, collecting virgin female progeny, and aging
them for 5–6 days. After extracting mRNA from these

flies, a cDNA pool containing random fragments from
the transcriptome was constructed and analysed using
the high-throughput sequencing technology developed
by 454 Life Sciences (Roche).

Analysis of sequencing statistics, informative reads and
allelic expression

In all, 36 855 high-quality 454 sequencing reads were
obtained from the random interspecific hybrid cDNA
library (Table 1). The average length of these reads was
170 bp, with 74 and 250 bp for the 2.5 and 97.5 percen-
tile respectively. Eighty-eight per cent of these reads
had at least one homologous sequence in either the
D. melanogaster or D. simulans genome (BLAST, E-value
< 10)4), 5% of which showed homology to only one of
the two parental genomes. These reads mapped to 5591
genes and 975 intergenic regions. Sequences derived
from intergenic regions accounted for 7% of the
mapped reads, and might have resulted from transcrip-
tion of unannotated genes or exons, abnormal splicing
that generated unexpected splice junctions, transposable
elements or spurious transcription (e.g. Stolc et al.
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Fig. 5 Read sampling strategy affects
the proportion of informative reads per
gene and thus the number of genes for
which significant allelic imbalance (AI)
can be detected. (A, B) Simulated pro-
portions of genes with more than 200
informative reads using a random or a
targeted read sampling strategy are
shown for mean read lengths of 35 bp
(A) and 150 bp (B), with individual
reads sampled from a Poisson distribu-
tion. See Fig. 2 for a more detailed
description of the simulation parame-
ters. (C) The proportion of informative
reads per gene using random (left),
targeted (middle) and mixed (right)
sampling strategies are shown. Each
beanplot represents the distribution (500
replicates) of the proportion of informa-
tive reads among 500 sampled reads.
The horizontal bar shown on each
beanplot indicates the mean of these
distributions. For the mixed strategy,
fragments with sequence lengths drawn
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of 500 bp were anchored to a fixed,
predetermined location (the 3¢ end), and
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2004). More than 10 reads matched each of 577 genes,
while more than 50 reads matched each of 83 genes.
Despite this relatively low sequencing depth, our data
appear to correctly, albeit crudely, measure total levels
of gene expression: estimates of transcript abundance in
F1 hybrids measured using 454 sequencing correlated
significantly (Spearman correlation, Rho = 0.45,
P < 0.001) with expression levels reported for female D.
melanogaster that were obtained using microarrays
(Harbison et al. 2005).
In order to assign each read to a specific parental

allele, we determined the number of variable sites
among 454 reads for a particular gene (i.e. SNPs) that
were identical to the D. melanogaster and D. simulans
reference genomes. This analysis was performed only
for reads that showed a significant alignment with both
reference genomes. Sequences were assigned to the spe-
cies with the highest number of identical SNPs. For
instance, if three SNPs within a given read were identi-
cal to the D. melanogaster reference genome and two
(different) SNPs were identical to the D. simulans refer-
ence genome, the read was assumed to be derived from
the D. melanogaster allele. Reads were expected to differ
from the reference genomes because the strains of D.
melanogaster and D. simulans used to generate the F1
hybrids analysed by 454 sequencing were not the same
as the strains sequenced to assemble these reference ge-
nomes. As mentioned above, shared recombination,
homoplasy, or errors in transcription or sequencing
might also complicate the assignment of individual
reads to one species or the other. In all, 26 039 reads,
which is 71% of all high-quality reads, were assigned
to one species or the other. At least 10 informative
reads were identified for each of 465 genes, with 58 of
these genes having more than 50 informative reads each

(Fig. 6B). As shown in Fig. 4, genes with 50 informa-
tive reads had 60% power to detect significant AI of at
least twofold, while genes with 10 reads had only 20%
power to detect changes of the same magnitude. Con-
sistent with both intuitive and mathematical predic-
tions, long reads were more often informative for allele-
specific expression than short reads (Fig. 6A), with the
average length of uninformative reads only !70% that
of informative reads (Table 1).
Intriguingly, more informative reads (53%) were

assigned to the D. melanogaster allele than to the D. sim-
ulans allele (13 770 and 12 269 reads, respectively; bino-
mial test: P < 0.001). The excess of D. melanogaster
alleles was greater among sequences from genomic
regions annotated as genic than those annotated as in-
tergenic (53.0% vs. 50.3%), although this difference was
not significant (v2 = 3, P = 0.08) and may be an artefact
of the much smaller number of reads classified as inter-
genic (93% vs. 7%). The overabundance of D. melanog-
aster alleles was observed not only across the whole
transcriptome analysed but also for subsets of genes
with different expression levels (Fig. 6C). The one (sur-
prising) exception to this was the subset of genes with
the highest overall expression levels, which showed an
excess of D. simulans alleles (Fig. 6C). This shows that
the greater abundance of D. melanogaster reads observed
in F1 hybrids cannot be explained by higher expression
of the D. melanogaster allele of only a few highly
expressed genes. In addition, this pattern is unlikely to
result from poor quality sequences or alignments
because (i) BLAST hit lengths are on average identical in
both reference genomes, (ii) there were on average 4.5
discriminating SNPs per informative read, in both spe-
cies, which makes nearly all assignments unambiguous
and (iii) the trend remained after applying a higher

Table 1 Number of reads, mean read and BLAST hit length, and average number of discriminating SNPs for Drosophila melanogaster,
Drosophila simulans and uninformative reads. Within brackets: 2.5 and 97.5 percentile. ‘Undetermined SNPs’ are polymorphic sites in
454 reads that do not match either reference genome

No.
reads

Mean reads
length

Mean
D. melanogaster
BLAST hit length

Mean
D. simulans
BLAST hit length

No.
D. melanogaster
SNPs

No.
D. simulans
SNPs

No.
unknown
SNPs

All reads 36 855 173 (74;250) 150 (45;259) 149 (43;259) 1.92 (0;5) 1.61 (0;4) 0.72 (0;2)
Nonattributed 4502 192 (71;305)
D. melanogaster BLAST hits only 1429 160 (68;282) 123 (22;261)
D. simulans BLAST hits only 271 138 (64;279) 98 (23;257)
D. melanogaster alleles (‡1 SNP) 13 770 176 (81;279) 160 (61;263) 154 (52;259) 4.7 (1;15) 0.24 (0;2) 0.78 (0;6)
D. simulans alleles (‡1 SNP) 12 269 177 (80;280) 156 (54;259) 159 (58;262) 0.39 (0;3) 4.45 (1;14) 1 (0;6)
Uninformative reads (‡1 SNP) 4614 140 (64;265) 110 (30;238) 107 (28;236) 0.28 (0;2) 0.28 (0;2) 0.76 (0;6)
D. melanogaster alleles (‡2 SNPs) 10 984 182 (86;281) 168 (72;264) 161 (61;260) 5.56 (2;15) 0.24 (0;2) 0.78 (0;6)
D. simulans alleles (‡2 SNPs) 9521 184 (86;281) 164 (63;261) 168 (69;265) 0.4 (0;3) 5.35 (2;15) 1.02 (0;6)
Uninformative reads (‡2 SNPs) 10 148 147 (67;266) 121 (34;246) 118 (32;244) 0.57 (0;3) 0.56 (0;3) 0.81 (0;6)

SNP, single nucleotide polymorphism.
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stringency cutoff (‡2 SNPs, see Table 1). Based on all of
these observations, we conclude that the preferential
expression of D. melanogaster alleles observed in F1
hybrids is a real (biological) property of these flies and
likely results from a process that affects allelic tran-
scription on a genomic scale. This expression bias does
not appear to be caused by a particular tissue, a partic-
ular biological function, or a particular chromosomal
location (data not shown); however, deeper sequence

coverage is required to test these hypotheses defini-
tively.

Allelic imbalance in Drosophila hybrids

As described in the Introduction, quantifying AI in F1
hybrids provides a direct readout of relative cis-regula-
tory activity. We tested for significant AI of the 891
genes that show more than six informative reads
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because it is impossible to reach significance (P < 0.05)
with a binomial test and less than six observations. One
hundred seven of these 891 genes (12%) showed signifi-
cant AI based on our data (Table S1, Supporting infor-
mation). For this analysis, we estimate the false
discovery rate to be c. 17% by resampling our observed
distribution of informative read abundance assuming
observed AIs are true or equal to 1. On the other hand,
we estimated c. 13% of false negative AI. Consequently,
the analysis suggests that more than 190 genes could
show true AI (21% of tested genes). In fact, despite the
low level of sequencing depth, we detected significant
AI for 35% of genes with more than 50 informative
reads and for 14% of genes with more than 10 informa-
tive reads. On average, the more abundant allele of a
gene was observed five times more than the less abun-
dant allele, with a minimum of 1.6 and a maximum of
15 (Fig. S4, Supporting information). Finally and per-
haps not surprisingly given the overall excess of reads
most similar to D. melanogaster, the D. melanogaster allele
was more abundant than the D. simulans allele for 73
(68%) of these 107 genes (binomial test: P < 0.001,
Fig. 6C).

454 sequencing and pyrosequencing produce similar
estimates of allelic expression

To determine whether 454 sequencing produces accu-
rate estimates of allelic expression, we used pyrose-
quencing to independently quantify AI in 14 genes and
compared the results to estimates obtained using 454
sequencing. The 14 genes selected for this analysis had
allelic expression differences that spanned the range of
AI values observed with 454 sequencing (compare
Fig. 6D and Fig. S4). Pyrosequencing permits quantifi-
cations of allelic expression for individual genes and
produces estimates of AI that are consistent with those
obtained using both quantitative real-time PCR and
microarrays (Wittkopp et al. 2006). Pyrosequencing
allows high levels of replication for a modest cost, thus
very precise estimates of AI can be obtained. Despite
the small number of informative 454 sequencing reads
for some of the genes analysed (Table S2, Supporting
information), we found a significant correlation between
estimates of allelic expression obtained using these two
techniques (Fig. 6D; Spearman’s Rho = 0.65, P < 0.05).
The effect of sequencing depth for individual genes on
the precision of allelic expression estimates is readily
visible by examining the gene-specific binomial sam-
pling confidence intervals shown in Fig. 6D. Because
precision improves with deeper sequencing coverage,
we also examined the correlation between measures of
allelic expression for the eight genes with at least 20
informative reads each. This subset of the data showed

a stronger correlation (Spearman’s Rho = 0.74, P < 0.05),
as expected.

Discussion

Less than a decade ago, Gibson (2002) predicted that
microarrays would have a tremendous impact on
molecular and genetic research at the interface of organ-
ismal and population biology. Since then, this method-
ology has proven to be a formidable tool for examining
the extent of gene expression polymorphism within spe-
cies and divergence between species, as well as for
studying the evolutionary processes that generate and
act upon regulatory variation. Microarray studies have
revealed extensive inter-individual variation in gene
expression and showed that this variation is often heri-
table and its segregation within and between species is
primarily affected by neutral drift and stabilizing selec-
tion (see for review Whitehead & Crawford 2006). Per-
haps surprisingly, very little adaptive regulatory
variation has been identified. This may be because it is
uncommon or because we do not yet have the correct
theoretical framework for distinguishing the effects of
neutral and non-neutral evolution (Fay & Wittkopp
2008).
High-throughput sequencing technologies are now

poised to replace microarrays for measuring gene
expression on a genomic scale, especially for evolution-
ary and ecological studies that require analysis of many
species and ⁄or individuals with divergent genotypes.
(Elmer et al., 2010) Compared to microarrays, a high-
throughput sequencing approach is more complex tech-
nologically, yet much simpler statistically and methodo-
logically. Furthermore, it does not require taxon-specific
probes or any a priori sequence information, making it
suitable for measuring expression profiles of virtually
any species. Arguably, its greatest advantage relative to
microarrays is that both total and allelic measures of
gene expression are obtained simultaneously. With
measures of allelic expression, there is a closer relation-
ship between an allele’s sequence and its activity, mak-
ing it easier to study the inheritance of gene regulation
phenotypes within and between species.
Indeed, using allelic expression rather than total gene

expression not only facilitates studies exploring the evo-
lutionary consequences of naturally occurring regula-
tory variation, but also simplifies mapping of
regulatory mutations variation, which is necessary to
elucidate the genetic architecture of gene expression.
Such studies allow researchers to more efficiently iden-
tify loci, genes and molecular processes that play
important roles in adaptation. We fully anticipate that
studies of allelic expression will soon produce novel
insights for the field of molecular ecology, as well as
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many other fields. We hope that the theoretical and
empirical information provided by this study helps
researchers design experiments that test specific
hypotheses efficiently and cost effectively.
To this end, we have developed a mathematical

model that allows researchers to estimate the minimum
sequencing depth needed to detect significant AI, based
on the average sequence read length of their chosen
next generation sequencing technology, the average
genetic divergence between alleles under study, the
approximate number of transcribed genes, and the
anticipated distribution of transcript levels across the
genome. For instance, eqn (14) shows that, for an
experiment that uses reads averaging 150 bp and com-
pares allelic expression in a polymorphic species with
0.1% sequence divergence, more than 4000 sequence
reads per gene are needed to achieve 60% statistical
power for detecting significantly AI larger than 1.5-fold
(see Figs 3 and 4). For a genome containing 10 000 tran-
scribed genes (and assuming an exponential decay dis-
tribution for expression levels), such a study would
require c. 40 million reads (Fig. 3). If the average
sequence length were increased to 500 bp, the number
of sequence reads required would be decreased fourfold
to c. 10 million reads. With only three million reads, a
statistical power of !20% would be achieved.

Caveats and considerations

We stress that these predictions should be treated as
approximate guidelines only because a number of fea-
tures of real transcriptomes violate our model and
cause our equations to over- or underestimate the requi-
site number of sequence reads. In the following para-
graphs, we discuss four such features and their impact
on study design.
We modelled the distribution of transcript levels

using a standard decay function, yet the distribution of
transcript abundances in real organisms will virtually
never fit such as function perfectly. In particular, strong
deviations in distribution tails, such as many more
genes with extremely high or low expression levels, will
cause the model to underestimate the required mini-
mum sequencing depth. If the precise distribution of
transcript levels is known a priori for a particular
organism, however, this information can easily be incor-
porated into eqn (13) to improve the accuracy of the
predictions.
Another potential caveat comes from the imprecise

construction of cDNA pools. We found that the way
sequences are sampled from mRNA transcripts affects
the statistical power for a given set of parameters
(Fig. 5). We modelled cases only in which cDNA pools
contain completely random fragments and perfectly tar-

geted fragments; however, one or more of the technical
steps used to create cDNA libraries for sequencing may
often introduce imperfections. For example, an unex-
pected bias may arise during the production of ‘ran-
dom’ cDNA libraries caused by factors such as the
preferential ligation of adapters used for sequencing.
Alternatively, targeted libraries may include unwanted
sequence fragments that result from reads in untargeted
regions. However, our analysis of the ‘mixed’ sampling
strategy suggests that small errors in the ultimate com-
position of cDNA libraries will have little effect on the
power to detect AI for most genes. Paired-end sequenc-
ing, which is an option now available for some technol-
ogies, has no clear advantages for AI analyses, although
it could be used to evaluate read and sample quality.
Yet another factor to consider carefully is which

genes (with respect to expression level) are of utmost
interest. For example, if highly transcribed genes are of
primary concern, shallow sequencing may be sufficient;
increasing sequencing depth has little impact on the sta-
tistical power to detect significant AI in these genes. By
contrast, if lowly transcribed genes are of most interest,
sequencing the entire transcriptome may require such
high coverage as to make the experiment impractical.
Removing transcripts from genes with the highest
expression by subtraction or normalization is one way
to increase coverage of the more lowly expressed genes;
however, care must be taken not to alter the relative
abundance of alleles for the genes of interest. Methods
such as quantitative PCR or pyrosequencing may be
much more cost-effective and reliable for measuring
allelic expression of a few lowly expressed genes.
Finally, computer simulations showed that the posi-

tion of SNPs within a transcript increases variance in
the expected number of informative reads per gene. The
model assumes, however, that SNPs are distributed ran-
domly across the length of each mRNA. In reality, poly-
morphic sites are rarely distributed randomly within a
transcript. For instance, they are known to be more fre-
quent in 5¢ or 3¢ UTRs than nonsynonymous sites (An-
dolfatto 2005). Differences also exist in the amount of
sequence polymorphism and divergence among genes.
In general, regions of transcripts with greater sequence
variation are more likely to produce informative reads
than regions with fewer polymorphic or divergent sites.
Finally, our model assumes that transcript abundance
and sequence divergence are independent, but in fact,
they are often correlated (Subramanian & Kumar 2004).

Properties of allelic expression in Drosophila hybrids

Interspecific hybrids between D. melanogaster and
D. simulans show extensive misexpression relative to
either parental species (Ranz et al. 2004). The primary
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cause of this misexpression is unknown, but it is gener-
ally attributed to incompatibilities between genomes
that disrupt gene regulatory networks (Landry et al.
2007). Consistent with this idea, prior work suggests
that the co-evolution of cis- and trans-regulatory factors
may contribute to misexpression when divergent alleles
meet in interspecific hybrids (Landry et al. 2005).
To compare the activity of homologous cis-regulatory

sequences between species, we used estimates of allelic
expression in interspecific F1 hybrids obtained using
454 sequencing. We measured allelic expression for
over 5500 of the most highly expressed genes and we
were able to test AI in !900 of these genes. Overall, we
detected significant AI for 12% of these genes; among
genes with the most informative reads (i.e. ‡50 reads
per gene), 35% of genes showed significant AI. Our
study almost certainly underestimates the percentage
of genes with differences in expression between
species-specific alleles in F1 hybrids because even 50
informative reads per gene provides only 25% and 60%
statistical power to detect significant AI for genes with
true allelic expression differences of 1.5- and twofold
respectively. Consistent with this interpretation, prior
studies of relative cis-regulatory activity between D.
melanogaster and D. simulans reported much higher per-
centages of genes with significant AI (Lemos et al. 2008;
Wittkopp et al. 2008a,b).

Genomic imbalance in interspecific hybrids

Widespread misexpression of genes is common in inter-
specific hybrids, and the genomic imbalance that we
observed in F1 hybrids between D. melanogaster and D.
simulans alleles may provide insight into the molecular
mechanisms responsible for this misexpression. Dro-
sophila melanogaster alleles are repeatedly overexpressed
in F1 hybrids despite the fact that both alleles are
expected to be regulated by the same pool of maternal
and paternal trans-acting factors. Long-range chromatin
effects that favour expression of D. melanogaster chro-
mosomes could contribute to this genomic imbalance,
as could interactions between the nuclear genome and
cytoplasmic components (especially mitochondria),
which were inherited from D. melanogaster in the
hybrids examined. It will be interesting to see whether
these same expression differences exist between the two
alleles if they are compared in cells containing only
trans-acting factors from D. melanogaster or D. simulans.
Such a comparison would provide a direct test for com-
plex interactions among divergent trans-acting factors
and cis-regulatory sequences. Although the prevalence
of such interactions remains an open question, a small
scale study of D. melanogaster found no evidence of
such cis-by-trans interactions (Wittkopp et al. 2008a,b).

Concluding remarks

Comparing the activity of orthologous cis-regulatory
alleles, as described here for interspecific Drosophila
hybrids, is but one application of sequence-based mea-
sures of allelic expression. Quantifying heritability of
gene expression, examining dominance and imprinting
among regulatory alleles, or revealing patterns of allelic
variation within and between species are some of addi-
tional applications for quantitative measures of relative
allelic expression. By identifying parameters critical for
such experiments and exploring their impact on possi-
ble outputs, we anticipate that results from this study
will help researchers optimize their available resources
and generate data sets that are best suited for address-
ing their primary question(s) of interest.
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